A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility.
نویسندگان
چکیده
The aim of this study was to investigate the role of the plant food matrix in influencing the extent of starch gelatinisation during hydrothermal processing, and its implications for starch digestibility. Differential scanning calorimetry (DSC) was used to provide a detailed examination of the gelatinisation behaviour of five distinct size fractions (diameters <0.21 to 2.58 mm) of milled chickpea and durum wheat. Gelatinisation parameters were obtained from the DSC thermograms and concomitant microscopy analyses were performed. The estimated terminal extent of gelatinisation (TEG) was compared with our previously published data for in vitro starch digestibility of the same food materials. We observed clear differences in the gelatinisation behaviour of matched size-fractions of chickpeas and durum wheat. In chickpea materials, the TEG values (34-100%) were inversely related to particle size, whereas in durum wheat, no size-dependent limitations on TEG were observed. The TEG values were completely consistent with the extent of starch amylolysis in all size fractions of both durum wheat and chickpea. Microstructural analysis following hydrothermal processing confirmed the presence of some partially gelatinised birefringent starch within intact chickpea cells. Birefringent starch granules were not present in any of the processed fractions of durum wheat. The differences in gelatinisation behaviour of these plant species seem to reflect the individual cell wall properties of these materials. These findings demonstrate the applicability of DSC to real food materials to provide insight into the mechanisms by which the food matrix (particularly the plant cell walls) influences gelatinisation, and consequently, starch amylolysis.
منابع مشابه
Food & Function
The aim of this study was to investigate the role of the plant food matrix in influencing the extent of starch gelatinisation during hydrothermal processing, and its implications for starch digestibility. Differential scanning calorimetry (DSC) was used to provide a detailed examination of the gelatinisation behaviour of five distinct size fractions (diameters <0.21 to 2.58 mm) of milled chickp...
متن کاملA novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles.
Studying starch amylolysis kinetics in vitro is valuable for predicting the postprandial glycaemic response to starch intake. Prediction of starch amylolysis behaviour is challenging however, because of the many physico-chemical factors which influence amylolysis. The Logarithm of Slope (LOS) method for analysis of digestibility curves using first-order enzyme kinetics can identify and quantify...
متن کاملRe-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism
The positive effects of dietary fibre on health are now widely recognised; however, our understanding of the mechanisms involved in producing such benefits remains unclear. There are even uncertainties about how dietary fibre in plant foods should be defined and analysed. This review attempts to clarify the confusion regarding the mechanisms of action of dietary fibre and deals with current kno...
متن کاملPredicting in vivo starch digestibility coefficients in newly weaned piglets from in vitro assessment of diets using multivariate analysis.
The study was based on correlating a dataset of in vivo mean starch digestibility coefficients obtained in the immediate post-weaning phase of piglets with a range of dietary in vitro variables. The paper presents a model that predicts (R2 0.71) in vivo average starch digestibility coefficients in the 0.5 small-intestinal region of newly weaned piglets fed cereal-based diets using seven in vitr...
متن کاملEffects of processing methods on amaranth starch digestibility and predicted glycemic index.
Amaranth has attracted a great deal of interest in recent decades due to its valuable nutritional, functional, and agricultural characteristics. Amaranth seeds can be cooked, popped, roasted, flaked, or extruded for consumption. This study compared the in vitro starch digestibility of processed amaranth seeds to that of white bread. Raw seeds yielded rapidly digestible starch content (RDS) of 3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Food & function
دوره 6 12 شماره
صفحات -
تاریخ انتشار 2015